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Abstract Similarity solutions are obtained for the propagation of a condensation wave into an initially dry 
porous matrix which receives an inflow of saturated vapor due to a step increase in temperature and pressure 
at the boundary. The generalized Darcy (low Reynolds number) formulation of two-phase flow leads to 
hyperbolic/parabolic equations in which capillarity and heat conduction are suppressed in order to 
emphasize the shock-like behavior. Application of the x/Jt similarity transformation gives ordinary 
differential equations which are solved by shooting methods, using jump-balance (Rankine-Hugoniot) 
conditions to preserve discontinuities in saturation (quality), pressure gradient and sometimes temperature. 
The distribution of condensate (saturation) is wave-shaped, with a forward-facing shock on the leading side. 
For a small temperature difference, there is little condensate and it is nearly immobile; the saturation shock 
lies close to the boundary, and the outer region is described by a reduced system of equations. With increasing 
temperature difference, the shock moves forward into the flow and gains in strength until the medium is 
liquid-full behind the shock. Beyond this, the shock splits into a pair of back-to-back shocks separated by a 
subcooled liquid slug. The considered prototypic problem is representative of a broad class of two-phase 
flows which occur in energy-related and geologic applications. 

NOMENCLATURE 

Independent variables 

x,X=x/L; 

q z = 2/r,, 

8, 0 = B/R, 

Dependent variables 

c, C = CAT/V&, 

h, H = hl@,,),, 
k, K = k/k,, 

P, p = (P - POYAP, 
s, S = s/As, 

t, T= (t - t,)/At, 

u, u = u/u,, 

v, v= v/u,, 

IQ, K, = KJA?, 

~0, K, = K,, 

P, P = PINP,, 

$3 @ = &o/Q&, 
<PC>, <PCh 

= <PC)l(PCh, 

position ; 
time [zo = TEL/U,] ; 
similarity variable 0 
= x/ Jz. 

specific heat ; 
entWv Rh,h = MPdl ; 
thermal conductivity ; 
pressure (Ap = p1 - p,,); 
saturation : liquid fraction 
by volume 
temperature (At = t, - to); 
Darcy velocity (u,, 

= IL-AplLp,) ; 
interstitial velocity; 
relative permeability of 
liquid ; 
relative permeability of 
vapor ; 

density [p. = PAPS, hJ1; 
entropy; 

bulk specific heat, (PC) = 

(1 - OP&n + CSPICI, <PC>0 
= (1 - ~)p,c, + cAsplc,. 

*This work supported by the U.S. Department of Energy. 
Contract DE-AC04-76DPOO789. 

tA U.S. DOE facility. 

Physical constants 

d, gas constant; 

6, characteristic pore 
dimension ; 

6, porosity; 

K, permeability ; 

IA viscosity. 

Dimensionless parameters 

N = PIIPO, 

Pe = NPouoh, 

(k)At/L ’ 

R - ” Pi As3 

PI PO N ’ 

GPo 
Re=-, 

P” 

,- = ASP,, 

Np,’ 

As = (PC)& 
~pdhdo ’ 

3. = At/t,, 

pressure ratio ; 

Peclet number; 

relative liquid mobility ; 

Reynolds number ; 

relative density change; 

specific heat ratio; 

nominal liquid saturation ; 

relative temperature change. 

1. INTRODUCTION 

CONDENSING flows in porous media occur in a number 
of energy-related applications. Steam injection into oil 
fields produces a condensation wave which heats the 
oil sands and reduces crude oil viscosity. In situ 
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combustion processes such as oil shale retorting and 
coal gasification are accompanied by propagating 
zones of evaporation and condensation. Hypothetical 
reactor accidents may involve boiling and conden- 
sation in fragmented debris and in porous concrete 
which is subjected to intense heating. Other examples 
arise in geothermal systems and in the containment of 
underground nuclear tests. 

A distinctive feature of pressure-driven condensing 
flows in porous media is the occurrence of a sharp, 
wave-like saturation front. The steep gradients of a 
condensation front are apparent in numerical simu- 
lations such as those of Morrison [l] and Weinstein, 
Wheeler and Woods [2]. However, the customary 
integration techniques permit smearing of the satu- 
ration shocks [3] in a manner analogous to the 
artificial viscosity effects of numerical gas dynamics. 
Also, the previous studies include application specific 
aspects such as multiple chemical species in either the 
liquid or the vapor phase, which de-emphasize the 
generic features of condensing flows in porous media. 
In contrast, the present study is concerned with a more 
fundamental condensation wave, and our primary 
purpose is to describe the mathematical and physical 
features of the shock phenomena. 

The prototype condensation problem to be con- 
sidered is the one-dimensional, transient flow of a 
compressible pure substance. Hot, dry vapor flows 
into a cold, initially dry, solid matrix, therein forming 
condensate which flows concurrently with the vapor. 
Energy transfer occurs by convection and conden- 
sation, and for each fluid phase the balance between 
viscous and pressure forces is accounted for by the 
generalized Darcy law which incorporates relative 
permeability functions. To emphasize the shock-like 
behavior, capillary pressure and heat conduction are 
suppressed. 

The parabolic/hyperbolic transport equations re- 
duce to ordinary differential equations under the 
similarity transformation, 0 = x/,/r. Since the system 
is only third order but has four independent boundary 
conditions, a saturation shock must occur. The or- 
dinary differential equations are solved by a shooting 
method which uses jump-balance relations in crossing 
the shocks. A family of steam flows in geologic media 
serves to illustrate solution behavior over a broad 
range of the parameters. A summary of the main 
results is given at the end of the paper. 

2. FORMULATION 

The transport equations for transient, one- 
dimensional, two-phase, compressible flow of a pure 
substance in a porous medium are as follows [4] : 

; (WI + a - a”) + ; bw, + P”U”J = 0 

The subscripts I, u and m, respectively, refer to the 
liquid, the vapor, and the solid matrix; s is the local 
volume fraction of the pore space which is occupied by 
a liquid, c is porosity, (k) is bulk thermal conductivity 
of the fluid saturated medium, and the other symbols 
have their usual meaning. The apparent velocities, uI 
and uO, represent average volumetric flow rates per unit 
sectional area of the medium. Darcy’s law serves as a 
constitutive equation which relates velocity to pres- 
sure gradient in low Reynolds number flow 
(Re s US/V) where viscous forces are in balance with 
pressure forces, 

K &I 
U, = -K,- - 

PLL’ ax 

K aP 
U, = -K1- -_ 

pI ax 

(2) 

The relative permeability functions K, and K[ are 
introduced as a means of extending Darcy’s law to a 
two-phase flow. The utility of this approach derives 
from the experimental observation that K~ and K, are, 
for a given medium, primarily functions of saturation 
alone [5]. The present study will make use ofanalytical 
expressions similar to those given by Scheidegger [6], 

Kl = S3 K,. = 1 - S, (3) 

with the understanding that these functions are only 
representative of the expected behavior. In addition, it 
is assumed that the fluid and the solid are in local 
thermal equilibrium ; that buoyancy forces are neglig- 
ible, and that interfacial tension is accounted for 
implicitly through the relative permeability functions. 

Thermodynamic relationships are described by the 
conventional analytical approximations. The liquid is 
incompressible; the gas is ideal, p, = p/k, and in two- 
phase regions, the pressure and temperature are 
related by the Clausius-Clapeyron equation 

(4) 

in which h,, = h, - h, > 0 and plc = pr - p, > 0. The 
enthalpies h,, h, and h, of the liquid, the saturated 
vapor and the matrix each depend linearly on tempera- 
ture with respective slopes (specific heats) cl, c,, and c,. 
To eliminate secondary parameters, let c, = 0, and 
suppose that the viscosities, p’I and p,,, and the matrix 
properties, K and t, are constants. 

Regarding initial and boundary conditions, con- 
sider the case of a semi-infinite porous medium which 
initially contains dry saturated vapor at a temperature 
t, and corresponding saturation pressure p,,. The 
transient is begun by suddenly subjecting the boun- 
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dary to an external environment which contains dry 
saturated vapor at t, and pi, such that At = t, - t, 
> 0, and Ap = pr - p,-, > 0. Condensation occurs as 
the hot, high pressure fluid penetrates into the cold, 
porous matrix. 

Upon normalization (as defined in the Nomencla- 
ture) and introduction of Darcy’s law, the conser- 
vation equations are rewritten in a form which isol- 
ates the effects of phase change and emphasizes the 
primary dependent variables (P, T, S) 

(PC) = (1 + Am) . 
(1 + A$) ’ 

lC, = 1 -ASS; K, = S3 

Here and hereafter we make the approximation that 
pJplu = 1. The principal parameters are N, I, and /I as 
defined in the Nomenclature; as well as the character- 
istic saturation As = (PC), At/cp,(h,,),, which repre- 
sents the amount of condensation nominally required 
to produce the temperature change At ; and the relative 
liquid mobility R = pvP,As3/pr Np,, which character- 
izes the relative significance of mass flow in the liquid 
and vapor phases. An important scaling consideration 
is the choice of a characteristic time TV 

(6) 

which recognizes that the two-phase wave speed is 
very slow (r >> 1) compared to a single-phase pressure 
wave (for which 2. = CL/U,, [17]), because the repre- 
sentative density change is Asp,, rather than Np,. 
Since I and the Peclet number, Pe, are usually very 
large, we can safely neglect: the time derivative of 
vapor density, the material derivative of pressure and 
the heat conduction which all appear on the RHS of 
the above transport equations. 

The partial differential equations cannot be class- 
ified as any one of the three basic types. Superheated 
vapor regions are generally parabolic. Subcooled 
liquid regions generally appear to be elliptic because 
the compressibility is negligible. Two-phase regions 
are of a mixed parabolic/hyperbolic type [8], but 
become strictly parabolic as R (the liquid mobility) 
+O. The hyperbolic character is therefore attributed to 

liquid mobility and the dependence of relative per- 
meability on saturation. 

Under the similarity transformation [l, 7, 93 

(7) 

the partial differential equations become ordinary 
differential equations 

e 
f + {(P,K, + RK,)P’}’ = 0 (8) 

;(PC)T + H,,(P,K,P’) 

subject to the boundary conditions P(0) = T(0) = 1, 
S(0) = 0; P(m) = T(m) = S(a) = 0. 

If shock-like discontinuities occur at a singular 
point 0 = 0,: local conservation must be enforced 
through the jumpbalance [lo] or Rankine-Hugoniot 
conditions. The jump-balance of momentum, roughly 
b] = ord{pu’}, usually admits a first-order pressure 
jump at a shock, but the estimates u N ord{Aprc/pL} 
and K N ord{S2} suggest that [P] u ord{Re S/L}, so 
that [P] becomes negligible once the flow has penet- 
rated deep enough (L/6 >> Re) to be considered asymp- 
totically self-similar (i.e., independent of Re, which is 
the Darcy assumption). The jump-balances of mass 
and energy are then 

[L(l - S)P”(v, - v,) + csPr(fl - v,)] = 0 (10) 

[c(l - s)P,H,(V” - v,) + d,H,(& - v,) 

+ (1 - dP,H,(- VI (11) 

dT 
=Pe-’ Kz 

[ 1 
in which V, = (dx/dt)/uo is the interface velocity of the 
discontinuity, and V, = VJ(l - s) E and V, = U&t are 
the so-called pore velocities or interstitial velocities of 
the liquid and vapor. The second law of thermody- 
namics must also be satisfied in crossing a shock 
[6(1 - s) @“P”(v, - v,) + ES@rPr(4 - v,) 

+ (1 - 4 @f/J- VI (12) 

Since P does not change in crossing, changes in the 
specific entropy 4 are calculated as d4 = d/r/t or d4 
= c,dt/t and, hence, 

[O,] = C,[ln( 1 + 3,T)]/l.; i = I, u, m. 

As in the differential equations, heat conduction will 
be ignored in the jump equation under the supposition 
that Pe >> 1. 
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3. WEAKLY~H~KED, STRICTLY 
TWO-PHASE FLOW: MODERATE N 

Since saturation conditions, T= T,,(P), are pre- 
scribed at both ends of the interval, it is reasonable to 
suspect that the intermediate states might also be 
saturated. Such strictly two-phase flows are found to 
occur, provided that the temperature difference (or 
pressure ratio) is sufficiently small, that a liquid-full 
condition does not occur at any cross section. 

Within two-phase regions, the temperature and 
pressure are related by the Clausius-Clapeyron equa- 
tion [now in a dimensionless form which reflects the 
boundary conditions: T(P = 0) = 0, T(P = 1) = l] 

dP {l + (N - l)P}&” 

dT=- (1 + i.7”)’ {1 + (K 
i 

1)P): 

and the conservation equations reduce to a third-order 
system of the form 

I- P,,l 
(14) 

subject to four independent boundary conditions, 

P(0) = 1, S(0) = 0; P(x) = 0, S(aL) = 0. (15) 

The system is therefore overconstrained. 
A sign change of the determinant, det A, suggests the 

presence of a shock. By application of the boundary 
conditions, it can be seen that det A > 0, as 8 -+ m. 
Conversely, at 0 = 0 (where the equations are sing- 
ular), an expansion in powers of 0”’ shows that 

(31.2 

’ = J( -6&R) + .” (16) 

p’= PO 1 + As 
i 

+ ..I (17) 

detA=O, andJdg(detA)cO atD=O. 

Thus, det A must change sign in crossing the interval. 
Allowance is made for a shock on the interior of the 

two-phase interval. Since both phases are present on 

both sides of the shock, [P] = 0 implies [T] = 0, and 
hence, [Pi] = [Ifi] = 0, i = I, v, m. Thus, with Re -K 1 
and Pe >> 1, the jump-balances of mass and energy 
jointly require continuity of both the vapor flux and 
the liquid flux 

[( 1 - SAs)( v, - v,)] = 0 

This means that there is no local phase change at the 
shock and that the second law is automatically 
satisfied through equality. 

Letting ‘hatted’ quantities represent function values 
downstream of the shock, the two conditions can be 
combined as follows to eliminate p 

+ RF’@’ + Sz + d) + R&=‘As = 0. (19) 

Which, on simplification, provides a quadratic in S 
having only one positive, real root. Thus, for given 8, S, 
P, and P’ there is a unique shock strength. Once 3 is 
available, P’ is readily determined from the first shock 
condition. It is interesting to note that if S = S, the 
above requirement reduces to the condition for det A 
= 0. It can also be shown that det A has the necessary 
sign change in crossing the shock, provided that [S] 
= s^ - S < 0. So, the two-phase saturation shock must 
face forward, although not as a consequence of entropy 
change. 

The system of equations is solved numerically by a 
shooting method. For chosen values of P’(0) = a, a 
three-term expansion from the singular origin is 
followed by rightward numerical integration, stopping 
at a presumed shock location 6,. Integration is then 
restarted with values of s^ and p determined from the 
shock conditions. The two shooting parameters a and 
8, are adjusted until the asymptotic boundary con- 
ditions, P(E) = S(z) = 0, are both satisfied. 

As an illustrative family of solutions, consider the 
case of dry saturated steam flowing into sandstone (/I 

Table 1. A family of steam flows 

Configuration parameters Shock locations 
N AS R i. (0,) 0s 

.__~. 

N-+1 0 0 0 
2 0.034 0.009 0.040 0.035 
5 0.084 0.083 0.098 0.435 

10 0.127 0.185 0.148 0.961 
15 0.161 0.292 0.180 1.17 

Pressure gradient 
Pb (R-+0) 
.._- 

(-li& 
- 0.533 (- 0.554) 
- 0.512 (- 0.557) 
- 0.505 (- 0.574) 
- 0.505 (- 0.589) 

19.5 0.184 0.371 0.202 (1.18) 1.18 - 0.507 (-0.601) 

100 0.359 0.924 0.360 (1.00) 1.13 - 0.515 (- 0.726) 
1000 0.855 2.56 0.688 (0.91) 1.21 - 0.525 (- 2.161) 
2500 1.26 4.38 1.28 - 0.521 (=) 
5000 1.75 7.31 1.34 - 0.510 
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SIMILARITYVARIABLE 0 

FIG. 1. Pressure profiles for various pressure ratios N = p,/pO. 

cz 0.6) and suppose that the initial temperature in the 
medium is 530”R, corresponding to an initial pressure 
of P, = 0.025 atm. For such a choice of fluid, medium 
and initial state, As, R, and 2 become increasing 
functions of N. The parameter values corresponding to 
particular choices of N are listed in Table 1 along with 
the shock location Bs and the surface pressure gradient 
P’(0) which were determined. Figures 1 and 2 illustrate 
the results. 

The pressure profiles of Fig. 1 lie within a rather 
narrow range of 8 which (based on the scaling 
considerations) suggests that the process is largely 
controlled by mass transfer in the vapor phase. As 
N + 1 the pressure is given by P(0) = erfc(0/2), and for 
large N the pressure profiles become proximate. The 
local condensation rate, (P,K,P’)‘, is non-negative 
everywhere in the flow and reaches a maximum in the 
vicinity of the pressure inflection. With increasing N 
the saturation shock becomes more pronounced and 
moves forward into the flow. There is a limiting 

‘.“r-- 
0.8 - 

I 

95 

F' 
1. 5 
1 
2.0 

SIMILARITY VARIABLE@ 

FIG. 2. Saturation profiles for various pressure ratios N. 

pressure ratio 2 (here fi N 19.5) for which the pore 
space becomes liquid-full behind the shock. 

It is generally true that the low-velocity liquid is 
overtaken by the shock and that the high-velocity 
vapor passes forward through the shock. As N + fi 
the shock conditions (for I- -+ m) require that P; + 0 
(suppressing a slight precursor ahead of the shock) 
and that I’- -+ V,, indicating that the wall of liquid 
advances with the shock velocity. 

4. UNSHOCKED IMMOBILE-LIQUID LIMIT: 
SMALL N 

When N is small, there is little condensate, it is 
relatively immobile, and the shock lies close to the 
surface. A secondary, inner scale in ~9 results from the 
disparity in phase velocities, as evident both in the 
saturation profiles of Fig. 2 and in the (e/R)“* terms 
which appear in the inner series expansion. Such 
behavior suggests the existence of an outer, down- 
stream solution complemented by a singular- 
perturbation boundary-layer. 

In the limit of vanishing liquid mobility (R -+ 0) the 
transport equations reduce to the following form 

e 
z(PC)p’ + $ H,,(P$,P') = 0 (20) 

dT dS T 
_- 

xv- (PC) 
or S= 

1 + A$(1 - T) ’ 
(21) 

The first equation describes the transient, Darcy flow 
of a vapor with a large apparent compressibility 
because of the phase change. The second ensures 
energy conservation by attributing local temperature 
change to local condensation, whereupon T becomes 
an explicit function of S. With S[T(P)] now available 
in analytical form, it is only necessary to solve a 
second-order, parabolic equation for the pressure. The 
dependence of S on P is such that the two outer 
boundary conditions are simultaneously satisfied if 
P(co) = 0, but the inner boundary conditions become 
incompatible. In choosing to satisfy the pressure 
condition P(0) = 1, it must also be accepted that S(0) 
= 1 and the surface can no longer be dry. This change 
in boundary conditions is physically reasonable be- 
cause the condensate which forms near the origin must 
now remain in place. 

The immobile liquid approximation is illustrated in 
Fig. 3 by a family of saturation profiles corresponding 
to parameter values (N, As, and n) of Table 1, except 
that R = 0 is now imposed. A comparison with the 
liquid-mobile solutions from Fig. 2 emphasizes the 
typical singular perturbation behavior [ 111. For small 
R, there is a narrow inner region where saturation 
gradients are steep, while the outer region remains 
nearly unaffected by the boundary layer and, to a good 
approximation, still satisfies the condition S + 1 as 
B + 0. As apparent in comparing the last two columns 
of Table 1, the immobile liquid approximation (R -+ 0) 

gives a good approximation to the inflow pressure 
gradient. 
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FIG. 3. Immobile liquid approximation (dotted lines) com- 
pared with shocked solutions (solid lines) for various pressure 

ratios N = pJp,,. 

The most natural description of the boundary layer, 
if it exists, should involve a resealing of the variables 
and matching with the outer region, a matter not 
pursued here. It is, however, interesting to replot the 
saturation profiles using 0 = 6/R as the independent 
variable. For small 0, all of the curves are nearly 
coincident, and as R becomes small (N + 1), the shock 
position approaches a nonzero limit. 

5. STRONGLY-SHOCKED, IMBEDDED-SLUG FLOW: 
LARGE N 

Recall from Section 3 that for large enough N (e.g. 
N + fl = 19.5 in Fig. 2) the medium becomes liquid- 

full behind the forward-facing shock. When N exceeds 
fl, the peak of the saturation wave broadens into a 
subcooled liquid zone. Within the subcooled zone 8, 
< fl < 6, the saturation is uniform at S = l/As, but P 
and T are independently variable, so that the transport 
equations become 

p”=O 

(22) 

T’+&T..=o. 

The pressure therefore decreases linearly in crossing 
the slug (i.e. velocity is uniform), and with conduction 
neglected (i.e. Pe + cc) the temperature must be 
uniform within the slug. 

Allowance is now made for shocks both on the 
leading side and on the trailing side of the liquid slug. 
Letting hatted quantities refer to the slug side (wet 
side) of either shock and letting [P] = P(0,) - P(B_) 
= 0, Pe + co, and I- + co ; conservation of mass and 
energy, respectively, require that 

[RK,P’+;S]+[~,K,P’]=O (23) 

+ H,“[P$,P’] = 0. (24) 

Phase change is, therefore, allowable, provided that 
the change in liquid flux relative to the shock is offset 
by the change in vapor flux and that the enthalpy of 
phase change accounts for the temperature jump of the 
mass flowing through the shock, including the mass of 
the solid phase. In addition, it is necessary to satisfy the 
second-law of thermodynamics (entropy-jump 
inequality) 

As/l [ln(l+i+T)] 

1 + A$ i. 

+ &[P$“P] I 0, (25) 

which reflects the identity, Qlv = H,,/(l + 1.T). Fi- 
nally, there is a temperature-jump inequality, y< T, 
which ensures that the slug side is not superheated. 

In checking the necessity and the admissibility of 
temperature jumps, it is found that T= T,.,[P(e,)] 
everywhere within the slug. The argument consists of 
two main points: 

(1) There must be a downward temperature jump at 
8,. Suppose to the contrary that T= T,,,(P) at 
el+. Then, upon moving rightward into the slug, 
T stays constant (from energy equation) while 
T,,,(P) decreases as the pressure falls. So, T_,,(P) 
falls below T, suggesting superheated conditions 
in a liquid region - a contradiction. 

(2) There cannot be a temperature jump at es. At 
any shock location, 0, the jump conditions on 
energy and entropy jointly require that 

[ln(l + AT)] - #I 

I 0. (26) 

Now, at fI1 the slug side is ahead of the shock, so 
that the script brackets above cannot be po- 

sitive. Conversely, at es the slug side is behind, so 
that the script brackets cannot be negative. 
Thus, a temperature jump is second-law ad- 
missible at or and/or at es, only if 

Ri+' + js- e-1+8,o 
B - 

and/or (27) 

RI+' + js- 8-l+8<o 
B - 

at or and 6,, respectively. Since the first condition 
must be satisfied [because (1) above demands a 
T-jump at e,], and since es > 0,, /I > 0, and R K, 
9 is the same at 6, and es (from continuity); it is 
impossible to satisfy the later inequality. There 
can be no temperature jump at es. 
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In view of the above observations and the previously 
noted absence of an internal temperature gradient, it is 
concluded that T= T,,[P(B,)] on [&+, e,]. 

Since temperature jump cannot occur at the leading 
edge, Q,, phase change cannot occur and the energy 
balance requires that P,K,P’ = 0 at BS+. The density 
cannot vanish ; and if K, + = 0, then S = l/As on both 
sides, and det A does not change sign in crossing. Thus, 
it must be that P’+ = 0, whereupon S’+ vanishes along 
with all of the higher-order derivatives, ruling out 
downstream variation in the dependent variables. So, 
in view of the boundary conditions, it must also be true 
that 

P=O,s=O, T=O ate,, (28) 

and it only remains to satisfy the jump-mass balance 
which now reads as 

RI;,P’++S=O ate,_. (29) 

This is recognized as the liquid-wall condition, 8 = V,, 
which previously accompanied the vanishing (sup- 
pressed) precursor in the limiting case as N + N. So, 
the slug solution appears to be a continuous extension 
of the earlier two-phase flows. 

Now, consider the trailing shock which lies behind 
the slug at 9,. A temperature drop, [T] = - T(8,), 
must occur here to ensure subcooled conditions 
throughout the slug. Using this, the jump-balances of 
mass and energy are alternatively combined to give 
both of the following expressions: 

(30) 

_ eT (1 + b) 
2(1 + AS/~) 

The first is a compatibility condition which must be 
satisfied on the upstream side of the shock. It is used to 
determine the shock location. The second gives p in 
terms of upstream data. This is all that is needed to 
resume downstream integration since d = P, ?= 0, 
and s^ = l/As. 

The computational procedure for a doubly shocked 
flow is simple because there is only one shooting 
parameter. For chosen a = P’(O), the two-phase equa- 
tions are integrated forward until the compatibility 
condition is satisfied, thereby determining or. Then, 
p(f?,) is calculated from the upstream data. Recalling 
that P” = 0 in the slug and that P(fIS) = 0, the leading 
shock must lie at OS = Br - P(B,)/&B,). Then, since 
?(e,) = p(e,), there is sufficient information to in- 
dicate whether or not the remaining shock condition 
(V; = V,) is satisfied at 8,; this being the sole criterion 
for iterative adjustment of a. 

SIMILARITYVARIABLE 0 

Doubly-shocked solutions are illustrated by the FIG. 5. Saturation profiles for various pressure ratios N. 
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FIG. 4. Pressure profiles for various pressure ratios N = pl/po. 

pressure and saturation profiles of Figs. 4 and 5. With 
increasing N, the slug broadens (see Table l), and the 
pressure rises at 0, to overcome the viscous drag on the 
slug. Both the liquid and the vapor overtake the 
condensation shock. At the leading edge 8, the liquid 
velocity matches the shock speed. However, on both 
sides of B, the liquid velocity exceeds the local shock 
speed, providing a mechanism for the timewise growth 
(self-similar stretching) of the slug. 

6. DISPERSIVE MECHANISMS 

Smearing of saturation shocks by the capillarity of a 
porous medium is analogous to viscous smearing of 
gas-dynamic shocks, as discussed previously [S, 61 for 
the classical Buckley-Leverett problem. If a finite 
capillary pressure were explicitly included in the 
present model, s,, would appear along with s, and s, in 
the continuity equation, the system would become 
fourth order with a proper number of boundary 
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conditions, and there would be no mathematical are of a mixed parabolic/hyperbolic type which de- 
necessity for a shock (although computational dificul- mands shock-like jumps in saturation and tempera- 
ties may still persist). Although the mechanisms of ture. In the considered case of a dry saturated-vapor 
capiiiarity and hydrodynamic dispersion preclude a inflow there is a singularity at the injection surface 
true discontinuity in saturation, these smearing effects which suppresses the inner structure in order to focus 
should be local, as in gas dynamic shock. Likewise, the on a representative, but relatively simple, outer struc- 
effects of macroscopic fingering instability (which ture. In a subsequent paper [13], we consider the 
might occur in two-phase drive of a liquid slug) should behavior under other boundary conditions, parti- 
be negligible because of the stabilizing influence of cularly those which result in imbedded regions of 
volumetric contraction at the moving condensation superheated vapor, as well as the case of a partially wet 
front [12]. or fully wet far field. 

Smearing of thermal shock by heat conduction is 
assessed by reformulation of the current problem 
under the suppositionof asymptotically large, but now 
finite, Pecltt number. Within two-phase regions, the 
~rturbation (due to e = l/Pe << 1) is regular [t l] 
because the T” conduction term in the energy equation 
can be grouped (using ClausiussClapeyron) with the 
stronger P” terms and, hence, the order of the equation 
is not changed. However, in the subcooled liquid slug, 
the addition of T” raises the order of the energy 
equation. The temperature distribution then remains 
uniform across the slug, except within a thermal 
boundary layer which replaces the temperature jump 
at 0r. The singular perturbation [ll] of the slug 
solution shows that the boundary layer thickness is of 
order l/Peand that the temperaturegradient at (3, is, to 
the first order 

Physical characteristics of the flow are strongly 
dependent on the magnitude of the temperature 
difference AT (parameterized by the pressure ratio, N), 
since it determines the nominal amount of conden- 
sation, As. 

When AT is small, there is little condensation 
and the liquid is nearly immobile. The tlow 
contains a weak saturation shock which lies 
close to the inflow boundary. The outer down- 
stream region is second-order parabolic and 
resembles a single-phase vapor flow with a large 
(phase-change) compressibility. 
So long as AT is moderate, the amount of 
condensate is insufficient to cause liquid- 
blockage of the pore space. At the saturation 
shock both phases are present on both sides, and 
the jump conditions require that : the shock faces 
forward, that there be no local phase change, 
that there be no local temperature jump. The 
low-mobility liquid is overtaken by the shock 
while the high-mobility vapor passes forward 
through the shock. Each mass flow is continuous 
in the shock frame, as in the classical 
Buckely-Leverett flow [S, 61. 
At large AT the liquid-full condition prevails 
over an interval in which the (incompressible) 
flow velocity and the temperature are uniform. 
The leading edge of this liquid slug is simply a 
wall of Iiquid, and the medium is undisturbed 
ahead (for T’ ,-+ x ). This full strength forward- 
facing shock is the continuous extension of the 
previous two-phase shock and, accordingly, 
there is no local phase change. On the trailing 
side of the slug there is a backward-facing 
saturation shock. Both liquid and vapor over- 
take the shock, and there is a temperature jump 
and some local condensation. 

ASP 
T' = [T]fe----- 

1 + Asp 
RI+' ) (31) 

in which [T] is now interpreted as the temperature 
change in crossing the boundary layer. In writing the 
jump energy balance for the saturation shock which 
still persists at or, temperature jump is now omitted, 
but a conduction term [T’/Pe] is included, thereby 
arriving at identically the same shock conditions. As 
Pe I+ co, the solution is, therefore, the same as before. 

Regarding second-law considerations, it is note- 
worthy that a necessary condition for existence of the 
(exponential) thermal boundary layer at high Pe is that 

(32) 

Since this criterion is identical to the entropy-jump 
inequality (27a) for a thermal shock, it follows that the 
second-law becomes extraneous when heat conduc- 
tion is included. An analogous situation occurs in 
shocked gas flows where the inviscid equations must 
be supplemented by entropy considerations, but the 
complete Navier-Stokes equations (including viscous 
smearing through u”) are self-sufficient. 

7. SUMMARY 

The considered prototype problem retains only the 
essential features of a condensing flow in a porous 
medium : concurrent gas/liquid mass transfer, con- 
vective energy transfer, and condensation due to 
flujd/solid energy exchange. Since ~apillarity and heat 
conduction are suppressed, the transport equations 

family of steam flows in geologic media serves to 
illustrate solution behavior over a broad range of the 
parameters. It is noteworthy that the penetration 
depth 8, v 1 and the pressure gradient P’(O) 2 -0.5, 
are very weak functions of the parameters, because the 
scaling considerations absorb the first-order depen- 
dency (as also checked for other fluid/solid systems). 
Thus, the scaling considerations and the compu- 
tational results have considerable generality in es- 
timating penetration depth, flow rates, and flow struc- 
ture for condensing flows in initially dry porous media. 
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ECOULEMENTS SELF-SIMILAIRES AVEC CONDENSATION DANS LES 
MILIEUX POREUX 

R&urn&--On obtient des solutions similaires pour la propagation de l’onde de condensation dans une 
matrice poreuse initialement s&he et qui repit un flux de vapeur saturCe dO ri un accroissement en Echelon de 
temp6ature et de pression d la front&e. La formulation g&raliste de Darcy (faible nombre de Reynolds) 
d’un &coulement diphasique conduit d des Cquations hyperboliques/paraboliques dans lesquelles la 
capillaritt et la conduction thermique sont supprim& de faGon ti dkgager le comportement semblable g un 
choc. L’application de la transformation en x/Jt donne des Equations aux d&iv& partielles qui sont 
r&olues en utilisant un bilan de saut (Rankine-Hugoniot) pour traiter des di~ontinuit~s de saturation 
(q~lit~) de gradient de pression et de tem~rature ~v~ntuellement. La dis~ibution du condensat (~turation) 
pr&ente un front. Pour unefaible diffkrence de tempbrature, il y a un faible condensat proche de I’immobilitC; 
le choc de saturation est proche de la fronti&e et la rkgion externe est d&rite par un systeme d’kquations 
rtiuit. Lorsque la diff&ence de temp&ature augmente, le choc se dCplace en avant et gagne en intensite 
jusqu’l ce que le milieu soit plein de liquide derribe le choc. Le choc se dtplace en avant et gagne en intensitt 
jusqu’ii ce que le milieu soit plein de liquide derriQe le choc. Le choc se &pare en deux chocs dos-i-dos, 
&par&s par un noyau de liquide sous-refroidi. Le problkme consid&& est reprisentatif d’une grande classe 

d%coulements diphasiques qui sont rencontr&s dans les applications Ii&s & l’knergie et g la gkologie. 

A;HNLICHE KONDENSIERENDE STRt)MUNGEN IN POROSEN MEDIEN 

Zusammenfassung-Fiir die Ausbreitung einer Kondensations-Welle in eine anfsnglich trockene poriise 
Matrix, in die durch ein sprunghaftes Ansteigen von Temperatur und Druck an ihrem Rande gesPttigter 
Dampf einstriimt, werden ~hnlichkei~l~sungen gewonn&. Die ve~lgemeinerte Darcy-Fo~ulier~ng 
(kleine ReynoIds-~hl) fiir Zwei-Pha~n-Str~mun~ fiihrt auf hv~rboii~h/oarabolische Gleichuneen. in 
henen zur ketonung des stol3artigen Verhaltens Ka$llarwirkung*&d Wfirmkieitung vernachlIssigt werden. 
Die Anwendung der X/,/t-Khnlichkeits-Transformation fiihrt zu gewiihnlichen Differential-Gleichungen, 
die durch Monte-Carlo-Verfahren gel&t werden; hierbei werden Sprungbedingungen (Rankine-Hugoniot) 
verwendet, urn Unstetigkeiten der SBttigung (Dampfgehalt) des Druckgradienten und manchmal der 
Temperatur zu erhalten. Die Kondensat-Verteilung (Sattigung) ist wellenfiirmig, mit einer Stoafront an der 
Vorderseite. Bei einer kleinen Temperatur-Differenz entsteht wenig Kondensat, und es ist fast unbewegt ; der 
S~ttigungs-StoB liegt nahe am Rand, das Gebiet au~rhalb wird durch ein reduziertes Gleichungssystem 
beschrieben. Mit ztmehmender Tem~ratur-Differenz bewegt sich der Stot3 vorwlrts in die StrGmung und 
nimmt dabei an StBrkezu, bis hinterdem StoBgesIttigte Fliissigkeit vorliegt. Danach teilt sich der StoBaufin 
ein Paar durch einen unterkiihlten fliissigen Pfropfen getrennter StGDe. Das betrachtete beispielhafte 
Problem steht fiir eine grol3e Gruppe von Zwei-Phasen-Striimungen, die im Bereich der Energietechnik und 

der Geologie Anwendung finden. 



1470 R. H. NILSON and L. A. ROMERO 

ABTOMOAEJIbHbIE PEWEHMJ3 FIPM KOH,QEHCAUMM B HOPMCTbIX CPEAAX 

AwoTaum-- nOnyYeHbI aBTOMOlICnbHble pWIeHHfl RnR C,Iy',aSI paCFIpOCTpaHeHl,K BOnHbl KOHMHCa- 

UHH B IlepBOHa'IanbHO CyXOti nOpHCTOti MaTpWe, B KOTOpyEO HaWfHaeT IIOCTyflaTb HaCbI",eHHbli% "Zip. 

B pe3ynbTaTe CKaqKOO6pa3HOrO yBeJIA'4eHWl TeMnepaTypbl H LkdBJIeHHII Ha I-paHWe. 0606meHHan 
$OpMynI,pOBKa 3aKOHa AapC‘f (MUIOe WCnO PeiiHOnbL,Ca)JUIn L,ByX+a3HOrO nOTOKa n03BOJIlleT FIOny- 

W,Tb rmep6onmecroekinapa6onmecroe ypaBHeHPI%B KOTOpbIX IIpOHHLlaeMOCTb A TerUIOIIpOBOilHOCTb 

IICKn,OYeHbI ma OTpaaeHIln cKa~Koo6pa3Horo XapKTepa IIpOlleCCa. npHMeHeHHe rIpeO6pa30BaHHs 

nono6an .Yu/Yf np,,BOAHT K 06bIKHOBeHHbIM l0+$epeHUHanbHbIM ypaBHeHH,,M. KOTOpbIe peUIeHb1 

MCTODOM WIpHCTpenKW>, P,CnOnb3y8 yCJIOBIin PeHKtlHa-r&OrOHHO Ha CKa'IKaX HaCbII"eHHR, rpa,iHeHTa 

&lBJleHliR Pi TeMnepaTypbI. PaCnpeneJleHHe KOHneHCaTa IlpOLiCXOAMT BOJIHOO6pa3HO C pa3pbIBOM Ha 

"epenHeM @pOHTe. npH He6OnbIIIOti pa3HOCTH TeMflepavp ROJUI KOHIleHCaTa He3HaWTenbHa U OH 

nO'ITIi HenOABHmeH; KOHneHCaT pkUIOnaraeTC5I y IIOBepXHOCTA Tena. a BHeUIHIISl 06nacTb TeWHMIl 

OnHCbIBaeTCfl yCe%HHOfi CrtCTeMO~ypaBHeHH~.npayBenuqeHHllpa3HOCTtlTCMnepaTypCKaqOKynnOTHe- 

HMIl IlepeMeUlaeTCn B CTOPOHY flOTOKa M yCWIkiBaeTCZ4 LIO TeX nOp, nOKa npOCTpaHCTB0 3a CKa'lKOM 

"OnHOCTbK) He SaIIOnHHTCII THilKOCTbIO. he 3TOzi o6nacra ynapHa%l BOJlHa paCEUW!TCfl Hii Ilapy 

yaapHbIx BonH. pa3neneHHbIx cnoekf HenorpeToG xiinK0C~~. PaccMaTpkiBaeMan 3anaqa xapaKTepHa 

ins ImpoKoro Knacca nByx+a3HbIx TeqeHGi. Bcrperammexcs B 3HepreTliKe H reonorm. 


