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Abstract — Similarity solutions are obtained for the propagation of a condensation wave into an initially dry
porous matrix which receives an inflow of saturated vapor due to a step increase in temperature and pressure
at the boundary. The generalized Darcy (low Reynolds number) formulation of two-phase flow leads to
hyperbolic/parabolic equations in which capillarity and heat conduction are suppressed in order to
emphasize the shock-like behavior. Application of the x/,/t similarity transformation gives ordinary
differential equations which are solved by shooting methods, using jump-balance (Rankine-~Hugoniot)
conditions to preserve discontinuities in saturation (quality), pressure gradient and sometimes temperature.
The distribution of condensate (saturation) is wave-shaped, with a forward-facing shock on the leading side.
For a small temperature difference, there is little condensate and it is nearly immobile ; the saturation shock
lies close to the boundary, and the outer region is described by a reduced system of equations. With increasing
temperature difference, the shock moves forward into the flow and gains in strength until the medium is
liquid-full behind the shock. Beyond this, the shock splits into a pair of back-to-back shocks separated by a
subcooled liquid slug. The considered prototypic problem is representative of a broad class of two-phase
flows which occur in energy-related and geologic applications.

NOMENCLATURE Physical constants
Independent variables R, gas constant;
x, X = x/L; position;; 0, characteristic pore
1, T =1/t time [ty = I'eL/uy}; dimen.sion;
0, @ = 6/R, similarity variable 6 & porosity;
= X/JT. K, permeability ;
U, viscosity.

Dependent variables
c, C= CAT/(hlv)O’

specific heat;

Dimensionless parameters

h, H = h(hy,)o, enthalpy [(h)o = hi(Po)]; N = Pu/Pos pressure ratio;
k, K = k/kg, thermal conductivity; Npouoh
p, P = (p — po)/Ap, pressure (Ap = p; — po); Pe = W’ Peclet number;
s, S = s/As, saturation: liquid fraction 3

by volume Rt PrlS relative liquid mobility;
t, T=(t — to)/At, temperature (At = t; — to); W po N
u, U = u/uy, Darcy velocity (u, Updp0

= kAp/Lu,); Re=——, Reynolds number;
v, V=v/u,, interstitial velocity; A o

— 3 3 [P
Ky, Ky = w)/As”, ;ﬁ;ijg’e permeability  of r= —;Z'v, relative density change;
s 0
K, K, =K, relative  permeability  of
P . .

vapor; B = W, specific heat ratio;
p, P = p/Np,, density [po = pulpo, to)]; -
¢, @ = dto/(hy)o,  entropy; (pE>el
<ped, (PO, Ag = $PE0A o .

. = 11 :
= $pe>Kpcn, bulk specific heat, (pc) - S o )e nominal liquid saturation;
(1 = )pmCm + €5p1C1 {PE0 2= At/t,, relative temperature change.

= (1 — €)pmCm + €Aspic;.
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Contract DE-AC04-76DP00789.
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1. INTRODUCTION

CONDENSING flows in porous media occur in a number
of energy-related applications. Steam injection into oil
fields produces a condensation wave which heats the
oil sands and reduces crude oil viscosity. In situ
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combustion processes such as oil shale retorting and
coal gasification are accompanied by propagating
zones of evaporation and condensation. Hypothetical
reactor accidents may involve boiling and conden-
sation in fragmented debris and in porous concrete
which is subjected to intense heating. Other examples
arise in geothermal systems and in the containment of
underground nuclear tests.

A distinctive feature of pressure-driven condensing
flows in porous media is the occurrence of a sharp,
wave-like saturation front. The steep gradients of a
condensation front are apparent in numerical simu-
lations such as those of Morrison [1] and Weinstein,
Wheeler and Woods [2]. However, the customary
integration techniques permit smearing of the satu-
ration shocks [3] in a manner analogous to the
artificial viscosity effects of numerical gas dynamics.
Also, the previous studies include application specific
aspects such as multiple chemical species in either the
liquid or the vapor phase, which de-emphasize the
generic features of condensing flows in porous media.
In contrast, the present study is concerned with a more
fundamental condensation wave, and our primary
purpose is to describe the mathematical and physical
features of the shock phenomena.

The prototype condensation problem to be con-
sidered is the one-dimensional, transient flow of a
compressible pure substance. Hot, dry vapor flows
into a cold, initially dry, solid matrix, therein forming
condensate which flows concurrently with the vapor.
Energy transfer occurs by convection and conden-
sation, and for each fluid phase the balance between
viscous and pressure forces is accounted for by the
generalized Darcy law which incorporates relative
permeability functions. To emphasize the shock-like
behavior, capillary pressure and heat conduction are
suppressed.

The parabolic/hyperbolic transport equations re-
duce to ordinary differential equations under the
similarity transformation, 8 = x/\/ 7. Since the system
is only third order but has four independent boundary
conditions, a saturation shock must occur. The or-
dinary differential equations are solved by a shooting
method which uses jump-balance relations in crossing
the shocks. A family of steam flows in geologic media
serves to illustrate solution behavior over a broad
range of the parameters. A summary of the main
results is given at the end of the paper.

2. FORMULATION
The transport equations for transient, one-

dimensional, two-phase, compressible flow of a pure
substance in a porous medium are as follows [4]:

0 é
~{esp + el = 5)pu) + = {puu + pou} =0

0
a_r{‘s"’h‘ + e(1 = 5)ph, + (1 = €)pphm}
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The subscripts /, v and m, respectively, refer to the
liquid, the vapor, and the solid matrix; s is the local
volume fraction of the pore space which is occupied by
a liquid, ¢ is porosity, (k) is bulk thermal conductivity
of the fluid saturated medium, and the other symbols
have their usual meaning. The apparent velocities, u,
and u,, represent average volumetric flow rates per unit
sectional area of the medium. Darcy’s law serves as a
constitutive equation which relates velocity to pres-
sure gradient in low Reynolds number flow
(Re = ué/v) where viscous forces are in balance with
pressure forces,

K Op

u, = _K";Tva_x
2)

K Op

u = —K,E Fo

The relative permeability functions x, and «, are
introduced as a means of extending Darcy’s law to a
two-phase flow. The utility of this approach derives
from the experimental observation that k, and «, are,
for a given medium, primarily functions of saturation
alone [5]. The present study will make use of analytical
expressions similar to those given by Scheidegger [6],

K, = 1 - S, (3)

KI=S3

with the understanding that these functions are only
representative of the expected behavior. In addition, it
is assumed that the fluid and the solid are in local
thermal equilibrium ; that buoyancy forces are neglig-
ible, and that interfacial tension is accounted for
implicitly through the relative permeability functions.

Thermodynamic relationships are described by the
conventional analytical approximations. The liquid is
incompressible ; the gas is ideal, p, = p/Rt, and in two-
phase regions, the pressure and temperature are
related by the Clausius—Clapeyron equation

dp _hwp, pr Pl oo

~ B 4
dt t Pie th P ( )

in which by, = h, — h; > 0and p,, = p, — p, > 0. The
enthalpies h;, h, and h,, of the liquid, the saturated
vapor and the matrix each depend linearly on tempera-
ture with respective slopes (specific heats) ¢, ¢, and ¢,,.
To eliminate secondary parameters, let ¢, = 0, and
suppose that the viscosities, i, and y,, and the matrix
properties, k and ¢, are constants.

Regarding initial and boundary conditions, con-
sider the case of a semi-infinite porous medium which
initially contains dry saturated vapor at a temperature
t, and corresponding saturation pressure p,. The
transient is begun by suddenly subjecting the boun-
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dary to an external environment which contains dry
saturated vapor at t; and p,, such that At =t, — ¢,
>0, and Ap = p; — po > 0. Condensation occurs as
the hot, high pressure fluid penetrates into the cold,
porous matrix.

Upon normalization (as defined in the Nomencla-
ture) and introduction of Darcy’s law, the conser-
vation equations are rewritten in a form which isol-
ates the effects of phase change and emphasizes the
primary dependent variables (P, T, S)

Z—i - %{(vav + RK,)g—;} = — %(1 - SAS)%
(g
Ta e o

., 0 oT
= Pe 5)?((10 a_x> +T o
(1 +AspS)
T (14 Asp)

p _1+(N-DP[ 1
v N 14+ AT

PCY K,=1-AsS; K =§°

H,,,=1—< Asp )T.
1+ Asf

Here and hereafter we make the approximation that
p/pi, ~ 1. The principal parameters are N, 1 and § as
defined in the Nomenclature ; as well as the character-
istic saturation As = {pc)oAt/epi(h;,)o, Which repre-
sents the amount of condensation nominally required
to produce the temperature change At ; and the relative
liquid mobility R = p,p;As/u; Np,, which character-
izes the relative significance of mass flow in the liquid
and vapor phases. An important scaling consideration
is the choice of a characteristic time 1,

eL A
1o=I—, =20
U Npg

(6)
which recognizes that the two-phase wave speed is
very slow (I >» 1) compared to a single-phase pressure
wave (for which 7y = €L/u,, [17]), because the repre-
sentative density change is Asp,, rather than Np,.
Since I" and the Peclét number, Pe, are usually very
large, we can safely neglect: the time derivative of
vapor density, the material derivative of pressure and
the heat conduction which all appear on the RHS of
the above transport equations.

The partial differential equations cannot be class-
ified as any one of the three basic types. Superheated
vapor regions are generally parabolic. Subcooled
liquid regions generally appear to be elliptic because
the compressibility is negligible. Two-phase regions
are of a mixed parabolic/hyperbolic type [8], but
become strictly parabolic as R (the liquid mobility)
—0. The hyperbolic character is therefore attributed to
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liquid mobility and the dependence of relative per-
meability on saturation.
Under the similarity transformation [1, 7, 9]

ey \'?
r— 7
xAp) @

0= X x
TJT Ut
the partial differential equations become ordinary
differential equations

§S' + {(P,K, + RK)P'}Y =0 8

7POT + Hy(P K, PY

_AsB )RKP’T’—O 9
+<1+Asﬁ ! =0 0

subject to the boundary conditions P(0) = T(0) = 1,
S(0) = 0; P(e0) = T(0) = S(0) = 0.

If shock-like discontinuities occur at a singular
point 8 = 8, local conservation must be enforced
through the jump-balance [ 10] or Rankine~Hugoniot
conditions. The jump-balance of momentum, roughly
[p] = ord{pu?}, usually admits a first-order pressure
jump at a shock, but the estimates u ~ ord{Apx/uL}
and x ~ ord{é?} suggest that [P] ~ ord{Re &/L}, so
that [P] becomes negligible once the flow has penet-
rated deep enough (L/6 > Re) to be considered asymp-
totically self-similar (i.e., independent of Re, which is
the Darcy assumption). The jump-balances of mass
and energy are then

[e(l = 9)P,(V, = V)) + esP (Vi = V)] =0 (10)
[e(1 = 5)P,H,(V, = V) + esP H(V, — V)

= Pe~! Kd—T
- de

in which ¥, = {dx/dt)/u, is the interface velocity of the
discontinuity, and V, = U,/(1 — s)eand V, = U//sc are
the so-called pore velocities or interstitial velocities of
the liquid and vapor. The second law of thermody-
namics must also be satisfied in crossing a shock
[e(1 —5) D,P,(V, — V)) + es D, P, (V;, — V)

+(1-9P,P, (- V)] (12)
_1[ K dTi’
= Pe —|.
1+ 2T d@

Since P does not change in crossing, changes in the
specific entropy ¢ are calculated as d¢ = dh/t or d¢
= ¢;dt/t and, hence,

[@]=ClIn(l + AT)]/2; i=10v,m

As in the differential equations, heat conduction will
be ignored in the jump equation under the supposition
that Pe » 1.
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3. WEAKLY-SHOCKED, STRICTLY
TWO-PHASE FLOW: MODERATE N
Since saturation conditions, T= T_(P), are pre-
scribed at both ends of the interval, it is reasonable to
suspect that the intermediate states might also be
saturated. Such strictly two-phase flows are found to
occur, provided that the temperature difference (or
pressure ratio) is sufficiently small, that a liquid-full
condition does not occur at any cross section.
Within two-phase regions, the temperature and
pressure are related by the Clausius—Clapeyron equa-
tion {now in a dimensionless form which reflects the
boundary conditions: T(P =0) =0, T(P = 1) = 1]

dP {1+ (N-DP}H, | [ dp /
dT (1 + AT) o {1+ (N - 1)P}/
' H,dT
jotl +)~T)2} )

and the conservation equations reduce to a third-order

system of the form
A PII
s

subject to four independent boundary conditions,

PO)=1,5(0)=0; P(cxx)=0, S(ox)=0. (15)

b (14)

The system is therefore overconstrained.

A sign change of the determinant, det 4, suggests the
presence of a shock. By application of the boundary
conditions, it can be seen that det 4 > 0, as 8 —» .
Conversely, at & = 0 (where the equations are sing-
ular), an expansion in powers of #'/2 shows that

91{2 6
s=m+... (16)
12
Plsz{lﬁ‘ASm}'*‘“‘ (17)

d
det4 =0, and a—g(detA) <Q atfd=0.

Thus, det A must change sign in crossing the interval.
Allowance is made for a shock on the interior of the
two-phase interval. Since both phases are present on
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both sides of the shock, [P] = 0 implies {T] = 0, and
hence, [P;] = [H;] =0, i = L,v,m. Thus, with Re « 1
and Pe » 1, the jump-balances of mass and energy
jointly require continuity of both the vapor flux and
the liquid flux

[(1 - SAs)V, — V)] =0

; 6 - T~
:{x,,(\l) +5T 1>]=0:[va]_0
(18)
[SAs(V, — V)] = O:[RKIP’ + gs} =0,

This means that there is no local phase change at the
shock and that the second law is automatically
satisfied through equality.

Letting ‘hatted’ quantities represent function values
downstream of the shock, the two conditions can be
combined as follows to eliminate P’

"v{g +RP(S* + 8% + ss‘)} + RKPAs=0. (19)
Which, on simplification, provides a quadratic in S
having only one positive, real root. Thus, for given 8, §,
P, and P’ there is a unique shock strength. Once Sis
available, P' is readily determined from the first shock
condition. It is interesting to note that if § = S, the
above requirement reduces to the condition for det 4
= (. It can also be shown that det 4 has the necessary
sign change in crossing the shock, provided that [5]
=§— S <0.So, the two-phase saturation shock must
face forward, although not as a consequence of entropy
change.

The system of equations is solved numerically by a
shooting method. For chosen values of P'(0) =«, a
three-term expansion from the singular origin is
followed by rightward numerical integration, stopping
at a presumed shock location 6. Integration is then
restarted with values of § and P’ determined from the
shock conditions. The two shooting parameters o and
#, are adjusted until the asymptotic boundary con-
ditions, P(oc) = §(>) = 0, are both satisfied.

As an illustrative family of solutions, consider the
case of dry saturated steam flowing into sandstone (§

Table 1. A family of steam flows

Configuration parameters

Shock locations Pressure gradient

N As R p @) 8, P, (R—0)
N -1 0 0 0 (—1/Jm)
2 0.034 0.009 0.040 0.035 —0.533 {~0.554)
5 0.084 0.083 0.098 0.435 —0.512 (— 0.557)
10 0.127 0.185 0.148 0.961 — 0.505 {— 0.574)
15 0.161 0.292 0.180 1.17 —0.505 {— 0.589)
19.5 0.184 0.371 0.202 (1.18) 1.18 - 0.507 {—0.601)
100 0.359 0924 0.360 (1.00} 1.13 - 0.515 (~ 0.726)
1000 0.855 2.56 0.688 (0.91) 121 —0.525 {— 2.161)
2500 1.26 4.38 0.874 {0.89) 1.28 — 0521 ()
5000 1.75 7.31 1.04 {0.89) 1.34 - 0.510
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F1G. 1. Pressure profiles for various pressureratios N = p, /p,.

~ (.6) and suppose that the initial temperature in the
medium is 530°R, corresponding to an initial pressure
of P, = 0.025 atm. For such a choice of fluid, medium
and initial state, As, R, and . become increasing
functions of N. The parameter values corresponding to
particular choices of N are listed in Table 1 along with
the shock location 6, and the surface pressure gradient
P’(0) which were determined. Figures 1 and 2 illustrate
the results.

The pressure profiles of Fig. 1 lie within a rather
narrow range of 6 which (based on the scaling
considerations) suggests that the process is largely
controlled by mass transfer in the vapor phase. As
N — 1 the pressure is given by P(6) = erfc(8/2), and for
large N the pressure profiles become proximate. The
local condensation rate, (?,K,P’), is non-negative
everywhere in the flow and reaches a maximum in the
vicinity of the pressure inflection. With increasing N
the saturation shock becomes more pronounced and
moves forward into the flow. There is a limjting

1.0 T T T
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o
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I
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F1G. 2. Saturation profiles for various pressure ratios N.
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pressure ratio N (here N ~ 19.5) for which the pore
space becomes liquid-full behind the shock.

It is generally true that the low-velocity liquid is
overtaken by the shock and that the high-velocity
vapor passes forward through the shock. As N — N
the shock conditions (for I' — <o) require that P, — 0
(suppressing a slight precursor ahead of the shock)
and that V;- — V, indicating that the wall of liquid
advances with the shock velocity.

4. UNSHOCKED IMMOBILE-LIQUID LIMIT:
SMALL N

When N is small, there is little condensate, it is
relatively immobile, and the shock lies close to the
surface. A secondary, inner scale in 6 results from the
disparity in phase velocities, as evident both in the
saturation profiles of Fig. 2 and in the (9/R)'/* terms
which appear in the inner series expansion. Such
behavior suggests the existence of an outer, down-
stream solution complemented by a singular-
perturbation boundary-layer.

In the limit of vanishing liquid mobility (R — 0) the
transport equations reduce to the following form

0 , dP oo

§<PC>P +—~dT H, (P.K,P) =0 (20)
dT ds
m,-wes " T trapion @

The first equation describes the transient, Darcy flow
of a vapor with a large apparent compressibility
because of the phase change. The second ensures
energy conservation by attributing local temperature
change to local condensation, whereupon T becomes
an explicit function of S. With S[T(P)] now available
in analytical form, it is only necessary to solve a
second-order, parabolic equation for the pressure. The
dependence of S on P is such that the two outer
boundary conditions are simultaneously satisfied if
P(o0) = 0, but the inner boundary conditions become
incompatible. In choosing to satisfy the pressure
condition P(0) = 1, it must also be accepted that S(0)
= 1 and the surface can no longer be dry. This change
in boundary conditions is physically reasonable be-
cause the condensate which forms near the origin must
now remain in place.

The immobile liquid approximation is illustrated in
Fig. 3 by a family of saturation profiles corresponding
to parameter values (N, As, and 1) of Table 1, except
that R = 0 is now imposed. A comparison with the
liquid-mobile solutions from Fig. 2 emphasizes the
typical singular perturbation behavior [11]. For small
R, there is a narrow inner region where saturation
gradients are steep, while the outer region remains
nearly unaffected by the boundary layer and, to a good
approximation, still satisfies the condition S - 1 as
6 — 0. As apparent in comparing the last two columns
of Table 1, the immobile liquid approximation (R — 0)
gives a good approximation to the inflow pressure
gradient.
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F1G. 3. Immobile liquid approximation (dotted lines) com-
pared with shocked solutions (solid lines) for various pressure
ratios N = p,/p,.

The most natural description of the boundary layer,
if it exists, should involve a rescaling of the variables
and matching with the outer region, a matter not
pursued here. It is, however, interesting to replot the
saturation profiles using @ = 6/R as the independent
variable. For small @, all of the curves are nearly
coincident, and as R becomes small (N — 1), the shock
position approaches a nonzero limit.

5. STRONGLY-SHOCKED, IMBEDDED-SLUG FLOW:
LARGE N

Recall from Section 3 that for large enough N (e.g.
N - N = 19.5 in Fig. 2) the medium becomes liquid-
full behind the forward-facing shock. When N exceeds
N, the peak of the saturation wave broadens into a
subcooled liquid zone. Within the subcooled zone 8,
< 6 < 6, the saturation is uniform at § = 1/As, but P
and T areindependently variable, so that the transport
equations become

o
(22)

AsB 0 1+8 i

AP (e + SsEEP ey o,

1+Asﬁ( A3 ) Pe

The pressure therefore decreases linearly in crossing
the slug (i.. velocity is uniform), and with conduction
neglected (i.e. Pe — oc) the temperature must be
uniform within the slug.

Allowance is now made for shocks both on the
leading side and on the trailing side of the liquid slug.
Letting hatted quantities refer to the slug side (wet
side) of either shock and letting [P] = P(6.) — P(6-)
=0, Pe — o0, and I" - oo ; conservation of mass and
energy, respectively, require that

[RK,P’ + gsJ +[P,K,P]=0 (23)
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Asp
1+ Asg

~s 0 1+8
[T](RK,P +5 ST)

+ Hlv[vavP,] =0. (24)

Phase change is, therefore, allowable, provided that
the change in liquid flux relative to the shock is offset
by the change in vapor flux and that the enthalpy of
phase change accounts for the temperature jump of the
mass flowing through the shock, including the mass of
the solid phase. In addition, it is necessary to satisfy the
second-law of thermodynamics (entropy-jump
inequality)

Asp [In(1 + AT)]( ~s 0.1+
1+ Asp P RiGP +38 )

H v ’
. ;'T[P,,K,)P] <0, (25)
which reflects the identity, @,, = H,,/(1 + AT). Fi-
nally, there is a temperature-jump inequality, T< T,
which ensures that the slug side is not superheated.

In checking the necessity and the admissibility of
temperature jumps, it is found that T= T,[P(8,)]
everywhere within the slug. The argument consists of
two main points:

(1) There must be adownward temperature jump at
0,. Suppose to the contrary that T= T, (P) at
0, . Then, upon moving rightward into the slug,
T stays constant (from energy equation) while
T..(P) decreases as the pressure falls. So, T,,,(P)
falls below T, suggesting superheated conditions
in a liquid region — a contradiction.

(2) There cannot be a temperature jump at 0. At
any shock location, 6, the jump conditions on
energy and entropy jointly require that

0o

{[111(1 +iT)] - T

A~ 0.1
x(RK,P’+§S~%£>SO. (26)

Now, at 6, the slug side is ahead of the shock, so
that the script brackets above cannot be po-
sitive. Conversely, at 8, the slug side is behind, so
that the script brackets cannot be negative.
Thus, a temperature jump is second-law ad-
missible at 8, and/or at 8, only if

Raﬁ+
(27)

at 8, and 0, respectively. Since the first condition
must be satisfied [ because (1) above demands a
T-jump at 6,], and since 6,>6,, >0, and R K,
P'is the same at 8, and 6, (from continuity); it is
impossible to satisfy the later inequality. There
can be no temperature jump at 8.
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In view of the above observations and the previously
noted absence of an internal temperature gradient, it is
concluded that T= T_[P(6,)] on [6,., 6,].

Since temperature jump cannot occur at the leading
edge, 0,, phase change cannot occur and the energy
balance requires that P K, P’ = 0 at 8,,. The density
cannot vanish; and if k,, = 0, then § = 1/As on both
sides, and det 4 does not change sign in crossing. Thus,
it must be that P, = 0, whereupon §’, vanishes along
with all of the higher-order derivatives, ruling out
downstream variation in the dependent variables. So,
in view of the boundary conditions, it must also be true
that

P=0,§=0,T=0 até,, (28)

and it only remains to satisfy the jump-mass balance
which now reads as
~ 0 .

RK,P'+7S=0 atg,_. (29)
This is recognized as the liquid-wall condition, ¥, = ¥,
which previously accompanied the vanishing (sup-
pressed) precursor in the limiting case as N - N. So,
the slug solution appears to be a continuous extension
of the earlier two-phase flows.

Now, consider the trailing shock which lies behind
the slug at 6, A temperature drop, [T] = — T(6)),
must occur here to ensure subcooled conditions
throughout the slug. Using this, the jump-balances of

mass and energy are alternatively combined to give
both of the following expressions:

Asp 1\6
K P +T——<RK,P S+ —1)=>=0
Poko P+ 1+ASB{ ! +( >}

AsB/2
(30)
3
P = A%{H,,,(RK,P’ + gs>
3 (1+8) _HwG}
201 + Asf)  2As |’

The first is a compatibility condition which must be
satisfied on the upstream side of the shock. It is used to
determine the shock location. The second gives P’ in
terms of upstream data. This is all that is needed to
resume downstream integration since P = P, T= 0,
and § = 1/As.

The computational procedure for a doubly shocked
flow is simple because there is only one shooting
parameter. For chosen a = P'(0), the two-phase equa-
tions are integrated forward until the compatibility
condition is satisfied, thereby determining 6,. Then,
P'(8)) is calculated from the upstream data. Recalling
that P” = 0 in the slug and that P(8,) = 0, the leading
shock must lie at 8, = 6, — P(8,)/P'(8,). Then, since
P, = P'(8)), there is sufficient information to in-
dicate whether or not the remaining shock condition
(V; = V,) is satisfied at 6,; this being the sole criterion
for iterative adjustment of a.

Doubly-shocked solutions are illustrated by the
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F1G. 4. Pressure profiles for various pressure ratios N = p, /p,.

pressure and saturation profiles of Figs. 4 and 5. With
increasing N, the slug broadens (see Table 1), and the
pressure rises at 8, to overcome the viscous drag on the
slug. Both the liquid and the vapor overtake the
condensation shock. At the leading edge 6, the liquid
velocity matches the shock speed. However, on both
sides of 8, the liquid velocity exceeds the local shock
speed, providing a mechanism for the timewise growth
(self-similar stretching) of the slug.

6. DISPERSIVE MECHANISMS

Smearing of saturation shocks by the capillarity of a
porous medium is analogous to viscous smearing of
gas-dynamic shocks, as discussed previously [5, 6] for
the classical Buckley—Leverett problem. If a finite
capillary pressure were explicitly included in the
present model, s, would appear along with s, and s, in
the continuity equation, the system would become
fourth order with a proper number of boundary
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FiG. 5. Saturation profiles for various pressure ratios N.
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conditions, and there would be no mathematical
necessity for a shock (although computational difficul-
ties may still persist). Although the mechanisms of
capillarity and hydrodynamic dispersion preclude a
true discontinuity in saturation, these smearing effects
should be local, as in gas dynamic shock. Likewise, the
effects of macroscopic fingering instability (which
might occur in two-phase drive of a liquid slug) should
be negligible because of the stabilizing influence of
volumetric contraction at the moving condensation
front {12].

Smearing of thermal shock by heat conduction is
assessed by reformulation of the current problem
under the suppositionof asymptotically large, but now
finite, Peclét number. Within two-phase regions, the
perturbation {due to ¢ = 1/Pe « 1) is regular [11]
because the T” conduction term in the energy equation
can be grouped (using Clausius—Clapeyron) with the
stronger P” terms and, hence, the order of the equation
is not changed. However, in the subcooled liquid slug,
the addition of T” raises the order of the energy
equation. The temperature distribution then remains
uniform across the slug, except within a thermal
boundary layer which replaces the temperature jump
at 0, The singular perturbation [11] of the slug
solution shows that the boundary layer thickness is of
order 1/Pe and that the temperature gradient at §; is, to
the first order

Asp 1+

=[ ]Pe ﬂ( ,P’+2S g ) (31)

in which [T] is now interpreted as the temperature
change in crossing the boundary layer. In writing the
jump energy balance for the saturation shock which
still persists at 8, temperature jump is now omitted,
but a conduction term [T’/Pe] is included, thereby
arriving at identically the same shock conditions. As
Pe -+ oo, the solution is, therefore, the same as before.
Regarding second-law considerations, it is note-
worthy that a necessary condition for existence of the
{exponential) thermal boundary layer at high Pe is that

8.1+
(RK,P’ + 25Tﬁ> > 0.

Since this criterion is identical to the entropy-jump
inequality (27a) for a thermal shock, it follows that the
second-law becomes extraneous when heat conduc-
tion is included. An analogous situation occurs in
shocked gas flows where the inviscid equations must
be supplemented by entropy considerations, but the
complete Navier—Stokes equations (including viscous
smearing through ") are self-sufficient.

(32)

7. SUMMARY

The considered prototype problem retains only the
essential features of a condensing flow in a porous
medium: concurrent gas/liquid mass transfer, con-
vective energy transfer, and condensation due to
fluid/solid energy exchange. Since capillarity and heat
conduction are suppressed, the transport equations

R. H. Nitso~ and L. A. ROMERO

are of a mixed parabolic/hyperbolic type which de-
mands shock-like jumps in saturation and tempera-
ture. In the considered case of a dry saturated-vapor
inflow there is a singularity at the injection surface
which suppresses the inner structure in order to focus
on a representative, but relatively simple, outer struc-
ture. In a subsequent paper [13], we consider the
behavior under other boundary conditions, parti-
cularly those which result in imbedded regions of
superheated vapor, as well as the case of a partially wet
or fully wet far field.

Physical characteristics of the flow are strongly
dependent on the magnitude of the temperature
difference AT (parameterized by the pressure ratio, N),
since it determines the nominal amount of conden-
sation, As.

1. When AT is small, there is little condensation
and the liquid is nearly immobile. The flow
contains a weak saturation shock which lies
close to the inflow boundary. The outer down-
stream region is second-order parabolic and
resembles a single-phase vapor flow with a large
(phase-change) compressibility.

2. So long as AT is moderate, the amount of
condensate is insufficient to cause liquid-
blockage of the pore space. At the saturation
shock both phases are present on both sides, and
the jump conditions require that: the shock faces
forward, that there be no local phase change,
that there be no local temperature jump. The
low-mobility liquid is overtaken by the shock
while the high-mobility vapor passes forward
through the shock. Each mass flow is continuous
in the shock frame, as in the classical
Buckely-Leverett flow [5, 6].

3. At large A7, the liquid-full condition prevails
over an interval in which the (incompressible)
flow velocity and the temperature are uniform.
The leading edge of this liquid slug is simply a
wall of liquid, and the medium is undisturbed
ahead {for I’ — = ). This full strength forward-
facing shock is the continuous extension of the
previous two-phase shock and, accordingly,
there is no local phase change. On the trailing
side of the slug there is a backward-facing
saturation shock. Both liquid and vapor over-
take the shock, and there is a temperature jump
and some local condensation.

A family of steam flows in geologic media serves to
illustrate solution behavior over a broad range of the
parameters. It is noteworthy that the penetration
depth 8, ~ 1 and the pressure gradient P'(0) = ~0.5,
are very weak functions of the parameters, because the
scaling considerations absorb the first-order depen-
dency (as also checked for other fluid/solid systems).
Thus, the scaling considerations and the compu-
tational results have considerable generality in es-
timating penetration depth, flow rates, and flow struc-
ture for condensing flows in initially dry porous media.
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ECOULEMENTS SELF-SIMILAIRES AVEC CONDENSATION DANS LES
MILIEUX POREUX

Résumé—On obtient des solutions similaires pour la propagation de 'onde de-condensation dans une
matrice poreuse initialement séche et qui regoit un flux de vapeur saturée d{i & un accroissement en échelon de
température et de pression 4 la frontiére. La formulation généralisée de Darcy (faible nombre de Reynolds)
d’un écoulement diphasique conduit 4 des équations hyperboliques/paraboliques dans lesquelles la
capillarité et la conduction thermique sont supprimées de fagon a dégager le comportement semblable a un
choc. L'application de la transformation en X/,/t donne des équations aux dérivées partielles qui sont
résolues en utilisant un bilan de saut (Rankine-Hugoniot) pour traiter des discontinuités de saturation
{qualité) de gradient de pression et de température éventuellement. La distribution du condensat (saturation)
présente un front. Pour une faible différence de température, il y a un faible condensat proche de 'immobilité;
le choc de saturation est proche de la frontiere et la région externe est décrite par un systéme d’équations
réduit. Lorsque la différence de température augmente, le choc se déplace en avant et gagne en intensité
jusqu’a ce que le milieu soit plein de liquide derriére le choc. Le choc se déplace en avant et gagne en intensité
jusqu’a ce que le milieu soit plein de liquide derriére le choc. Le choc se sépare en deux chocs dos-a-dos,
séparés par un noyau de liquide sous-refroidi. Le probléme considéré est représentatif d'une grande classe
d’écoulements diphasiques qui sont rencontrés dans les applications liées a I'énergie et a la géologie.

AHNLICHE KONDENSIERENDE STROMUNGEN IN POROSEN MEDIEN

Zusammenfassung—Fiir die Ausbreitung einer Kondensations-Welle in eine anfinglich trockene pordse
Matrix, in die durch ein sprunghaftes Ansteigen von Temperatur und Druck an ihrem Rande gesittigter
Dampf einstrémt, werden Ahnlichkeitsldsungen gewonnen. Die verallgemeinerte Darcy-Formulierung
(kleine Reynolds-Zahl) fiir Zwei-Phasen-Strémung fiihrt aufl hyperbolisch/parabolische Gleichungen, in
denen zur Betonung des stoBartigen Verhaltens Kapillarwirkung und Wirmeleitung vernachliissigt werden.
Die Anwendung der X// t—Ahnlichkeits-Transformation fithrt zu gewShnlichen Differential-Gleichungen,
die durch Monte-Carlo-Verfahren gelost werden ; hierbei werden Sprungbedingungen (Rankine-Hugoniot)
verwendet, um Unstetigkeiten der Sittigung (Dampfgehalt) des Druckgradienten und manchmal der
Temperatur zu erhalten. Die Kondensat-Verteilung (Sattigung) ist wellenfdrmig, mit einer StoBfront an der
Vorderseite. Bei einer kleinen Temperatur-Differenz entsteht wenig Kondensat, und es ist fast unbewegt ; der
Sattigungs-Stof liegt nahe am Rand, das Gebiet auBerhalb wird durch ein reduziertes Gleichungssystem
beschrieben. Mit zunehmender Temperatur-Differenz bewegt sich der Stol vorwiirts in die Strémung und
nimmt dabei an Stiirke zu, bis hinter dem StoB gesiittigte Fliissigkeit vorliegt. Danach teilt sich der StoB aufin
ein Paar durch einen unterkiihlten fliissigen Pfropfen getrennter StéBe. Das betrachtete beispielhafte
Problem steht fiir eine groBe Gruppe von Zwei-Phasen-Strdmungen, die im Bereich der Energietechnik und
der Geologie Anwendung finden.
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ABTOMOJEJIbHBLIE PEWIEHWUA MNMPU KOHAEHCAUHWHK B MOPUCTBIX CPEJAX

Annoramnsa — [TojyueHbl aBTOMOIENbHbIE PELLCHHA ANl CJIy4as PAacnpOCTPAHEHMs BOJIHbI KOHIEHCa-
MM B NEPBOHAYAIIBHO CYXOi MOPHCTON MaTpHlle, B KOTOPYIO HAYHHAET NMOCTYNaTh HACHILEHHbIA nap,
B pe3yjbTaTe CKaukooOpa3HOro yBeIHYEHHs TeMnepaTypbl M [aBlieHHs Ha rpanune. O6obuieHHas
thopmynupoBka 3akoHa Jdapcu (Masoe uncio PeifHonbnca) ansg aByx¢a3HOro NoToKa MO3BOJIAET HOJY-
4MTh TUMepOOIMHECcKOe U 1apaboIHYeckoe yPaBHEHHS, B KOTOPBIX NPOHULAEMOCTh H TEMJIONPOBOJHOCTD
HCKJIIOYEHBI JUTS OTPAXEHHs CKaukooOpa3HOro xapaktepa npolecca. [1pumeHenne npeoOpasoBaHMs
nono6us X//! NPUBOAMT K OOBIKHOBEHHBIM NHGQPEPEHUHATbHBIM yPAaBHEHHSM, KOTOPBIE DEILEHbI
METOJOM «IIPUCTPEJIKH», HCIOIb3Ys yciaoBHA PeHkuHa-[1OrOHHO Ha CKa4Kax HACHILUEHHS, rpajMeHTa
NaBfieHUs M TeMrepaTypsl. Pacrnipenenenne koHAeHCaTa NPOMCXOIMT BOJHOOOPA3HO € pa3pbiBOM Ha
nepeaneM ¢pouTe. [Mpu HeOONBILOH PA3HOCTH TeMnepaTyp A0JIs KOHAEHCaTa HE3HA4YMTEsJbHa M OH
MOYTH HENMOABMXEH; KOHICHCAT PACMONATAETCs y [OBEPXHOCTH Tejia, a BHEWIHAS o61acTh TeueHHs
OMMCHIBACTCA YCEUEHHOM cHcTeMOM ypaBHEeHHH. [1pH yBesIHUEHHH PA3HOCTH TEMIIEPATYP CKaYOK yIUIOTHe-
HHS flepeMELLAeTCs B CTOPOHY NOTOKA M YCHJIMBAETCA O TeXx NOp, NoKa NPOCTPAHCTBO 34 CKAYKOM
NOJIHOCTBIO He 3aNOJIHUTCS KHAKOCTbio. Bue 3Toi 0OnacTH ydapHas BOJIHA pacnafaercs Ha napy
yJapHbIX BOJIH. PA3/IENIEHHBIX CJI0EM HeAorpeToil kuakocTH. PaccmaTpuBaemas 3ada4a xapakTepHa
IUTS IUMPOKOTO Kjacca ABYX(a3HbIX TEYCHHH. BCTPEYAIOLIMXCH B IHEPTETHKE H I€OJIOTHH.



